Math 210B Lecture 11 Notes

Daniel Raban

February 1, 2019

1 Tensor Products

1.1 Construction, universal property, and examples

Let A be a ring, let M be a right A-module, and let N be a left A-module.

Definition 1.1. The **tensor product** of M and N over A, denoted $M \otimes_A N$, is the quotient of $\mathbb{Z}^{M \times N} = \bigoplus_{(m,n) \in M \times N} \mathbb{Z}(m,n)$ by the \mathbb{Z} -submodule generated by

- 1. (m+m',n) (m,n) (m',n)
- 2. (m, n' + n) (m, n) (m, n')
- 3. (ma, n) (m, an)

for all $m, m' \in M$, $n, n' \in N$, and $a \in A$. The image of (m, n) in $M \otimes_A N$ is denoted $m \otimes n$ and is called a **simple tensor**.

Example 1.1. How do simple tensors work? Let $k \in \mathbb{Z}$.

$$k(m \otimes n) = (m \otimes n) + \dots + (m \otimes n) = (m + \dots + m) \otimes = (km) \otimes n = m \otimes (kn).$$

Similarly,

$$(-1)(m \otimes n) = (-m) \otimes n.$$

 $0 \otimes n = 0 = m \otimes 0.$

Proposition 1.1 (tensor product universal property). Let L be an abelian group and $\phi: M \times N \to L$ be such that

- 1. $\phi(m+m',n) = \phi(m,n) + \phi(m',n)$ (left biadditivity)
- 2. $\phi(m, n + n') = \phi(m, n) + \phi(m, n')$ (right biadditivity)
- 3. $\phi(ma, n) = \phi(m, an)$ (A-balanced).

There exists a unique homomorphism $\Phi: M \otimes_A N \to L$ such that $\Phi(m \otimes n) = \phi(m, n)$ for all $m \in M$ and $n \in N$.

Proof. $M \otimes_A N = \mathbb{Z}^{M \times N} / I$ for the ideal generated by the relations. $\mathbb{Z}^{M \times N}$ is free over \mathbb{Z} , so there exists a unique $\varphi : \mathbb{Z}^{M \otimes N} \to L$ given by $\varphi((m, n)) = \phi(m, n)$. We get

where the map $\mathbb{Z}^{M\otimes N} \to M \otimes_A N$ is surjective. This uniquely determined Φ if it exists; i.e. $\Phi(I) = 0$. We can verify, for example, that

$$\varphi((m+m',n) - (m,n) - (m,n)) = \phi(m+m;n) - \phi(m,n) - \phi(m',n) = 0. \qquad \Box$$

Here is a special case. Let A be an R-algebra, where R is commutative. Let $\psi : R \to Z(A)$, the center of A. M is an R-A bimodule, where rm = mr. Recall that an A-B bimodule is a left A-module and a right B module such that (am)b = a(mb) fir all $a \in A$, $m \in M$ and $b \in B$. We can define

$$r(m \otimes n) = (rm) \otimes n = (mr) \otimes n = m \otimes (rn)$$

to give $M \otimes_A N$ an *R*-module structure. Another way to do this would be to deinfe $M \otimes_A N$ as $R^{M \times N}$, quotiented by the *R*-submodule generated by the same relations, plus the relation r(m, n) - (rm, n).

What is the universal property saying?

$$\operatorname{Hom}_{R-\operatorname{mod}}(M \otimes_R N, L) \cong \operatorname{Hom}(M \times N, L),$$

where the right side is homomorphisms that are *R*-bilinear and *A*-balanced.

Example 1.2. Let K be a field. Then $K^m \otimes_K K^n$ is an *mn*-dimensional K vector space, generated by $e_i \otimes e_j$, where $\{e_i\}$ and $\{e_j\}$ form a basis for K^m and K^n , respectively:

$$K^m \otimes K^n = \left(\bigoplus_{i=1}^m K\right) \otimes K^n \cong \bigotimes_{i=1}^m (K \otimes K^n) \cong \bigoplus_{i=1}^m K^n \cong K^{mn}.$$

Example 1.3. $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/(m, n)\mathbb{Z}$. We have the biadditive, \mathbb{Z} -balanced map $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/(m, n)\mathbb{Z}$ sending $(a, b) \mapsto ab$, so there exists a unique map $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/(m, n)\mathbb{Z}$ sending $a \otimes b \mapsto ab$. This is surjective. Let $a, b \in \mathbb{Z}$. Then $m(a \otimes b) = ma \otimes b = 0$, and $n(a \otimes b) = a \otimes nb = 0$. Also, $a \otimes b = ab(1 \otimes 1)$, which means that this group is cyclic by has order dividing m and dividing n. So the map is injective.

Example 1.4. $A \otimes_A N \cong N$ as let *A*-modules.

More generally, let A, B, C be rings, let A be an A-B bimodule, and let N be a B-C bimodule. Then $M \otimes_B N$ is an A-C bimodule.

$$a(m \otimes n) = (am) \otimes n, \qquad m \otimes (nc).$$

1.2 Properties of the tensor product

Proposition 1.2. $M \otimes_A \cong N \otimes_{A^{op}} M$.

Proof. We have the map $(m, n) \mapsto m \otimes n$ which is bilinear and A-balanced. It induces a unique map $M \otimes_A N \to N \otimes_{A^{\text{op}}} M$.

Proposition 1.3. Let L be a right A-module, let M be an A-B bimodule, and let N be a left B-module. Then $(L \otimes_A M) \otimes BN \cong L \otimes_A (M \otimes_B N)$.

Proof. We can verify this using the universal property, as before. Alternatively, we can define the object $L \otimes_A M \otimes_B N$ as we defined the tensor product and show that $(L \otimes_A M) \otimes BN$ and $L \otimes_A (M \otimes_B N)$ are isomorphic to it.

Proposition 1.4. $(\bigoplus_{i \in I} M_i) \otimes_A N \cong \bigoplus_{i \in I} (M_i \otimes AN).$

Proposition 1.5. Let M be a left A-module, and let $I \subseteq A$ be a 2-sided ideal. Then $A/IA \otimes_A M \cong M/IM$ as A-modules.

Proof. Define a map $\phi : A/IA \times M \to M/IM$ such that $\phi(\overline{a}, m) = am + IM$. This is well-defined because if $b \in I$, then $\phi(b, m) = bm + IM = 0$. This satisfies the properties we need, so there exists a homomorphism $\Phi : A/I \otimes_A M \to M/IM$ of A-modules. This homomorphism is surjective. We can define an inverse $M/IM \to A/IA \otimes_A M$ sending $m + IM \mapsto 1 \otimes m$; this is well-defined because for $b_i \in I$ and $m_i \in M$,

$$\sum b_i m_i \mapsto 1 \otimes \sum b_i m_i = \sum (1 \otimes b_i m_i) = \sum \underbrace{(b_i \otimes m_i)}_{=0} = 0.$$

Check that this is the inverse of Φ .

We can also take tensor products of *R*-algebras *A* and *B* to get and *R*-algebra $A \otimes_R B$, where $(a \otimes b) \cdot (a' \otimes b') = aa' \otimes bb'$.